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Closing the Loop in the Lab:
Feasibility of a Physical Genetic Algorithm Approach for Optimising

Thermoresponsive Hydrogel Morphologies

LUCAS KIEWEK

Abstract— The design space for hydrogel micro-actuators is
expanding rapidly, increasing the need for systematic, physical
optimisation beyond simulation. This work implemented a
proof-of-concept genetic-algorithm (GA) pipeline that used real-
world feedback to evolve poly(N-isopropylacrylamide-co-acrylic
acid) (PNIPAm-co-AAc) micro-actuators. Candidate morpholo-
gies were encoded, fabricated, and actuated; fitness was then as-
signed by quantifying non-reciprocal deformation from tracked
trajectories. The pipeline produced 16 generations (25 candi-
dates each; 400 actuators) over 11 working days. Population
medians did not improve and per-generation maxima declined,
while the top actuator in each generation showed increasing
path amplitude. Analysis indicated a measurement–selection
misalignment where motion-based seed selection emphasised
large displacement, whereas the fitness rewarded geometric
non-reciprocity. The concurrent rise in voxel clustering is con-
sistent with morphological changes accompanying the observed
trends. This work provides a practical basis for GA-driven
micro-scale morphological optimisation once the alignment
between seed selection and fitness is corrected.

I. INTRODUCTION

Genetic algorithms (GAs) are search and optimisation
methods inspired by Darwinian evolution, in which popula-
tions of encoded solutions undergo fitness-based selection,
recombination, and mutation so that fitter individuals are
more likely to propagate. Originating in Holland’s math-
ematical formalism for adaptive systems, GAs provided a
theoretical basis that catalysed decades of work on evolving
solutions rather than hand-designing them [1]. This evolu-
tionary approach has been progressively adapted in robotics
because it effectively navigates large, multimodal, or non-
differentiable design spaces where gradients are unavailable
or deceptive [2]. This work is focused on the implementation
of an evolutionary pipeline for evolving morphologies at the
micro-scale, where perfecting parameters can be particularly
perplexing.

A. Towards Genetic Algorithms for Microrobotics

Early research in evolutionary robotics used GAs to
generate virtual, macro-scale morphologies which could be
cheaply evaluated through simulation at the expense of
approximated real-world physics [3]. Advancements in fab-
rication techniques such as additive manufacturing enabled
simulated morphologies to be realised physically [4]. How-
ever, these physical morphologies are often less fit than their
virtual counterparts due to ”the reality gap” [5]. Current work
seeks to close this gap by incorporating real-world evaluation
and iteration [6]. At the micro-scale, GA-driven morphology

searches largely remain simulation-based because iterative
microfabrication and measurement are technically demand-
ing [7], [8].

Fig. 1. Closed-loop pipeline for in situ micro-actuator evolution: voxel
genome, 2PP-DLW fabrication, global actuation, video measurement, and
selection.

B. Motivation

Poly(N-isopropylacrylamide) (PNIPAm) is a thermore-
sponsive hydrogel whose reversible swelling–collapse is
routinely harnessed to realise microactuators [9]. Recent
work from ETH Zürich’s Soft Materials and Interfaces
(SMI) group broadens the palette for micro-scale actuation,
demonstrating tunable thermoresponsive hydrogels, multi-
material constructs, and chemically programmable hysteresis
[10], [11]. These modalities expand the design space and
create a need for systematic methods to navigate it. Further-
more, two-photon polymerisation direct laser writing (2PP-
DLW), the fabrication method used here, can exhibit process-
dependent distortions, such as polymerisation blur and layer
warping, that decouple fabricated actuators from their virtual
blueprints, a micro-scale analogue of the reality gap [12].
Together, these factors motivate an evolutionary approach
that uses real-world feedback to discover functional hydrogel
microactuator designs.



C. Objective and Approach

The goal of this project was to explore the feasibility of a
GA-based, in situ optimisation pipeline for evolving PNIPAm
microactuators by implementing one practically in a labora-
tory setting. This involved solving challenges in iteration-
friendly microfabrication, mapping physical measurements
to genome performance, and mitigating unintended selection
pressures. The GA design was heavily inspired by “Evolving
and generalising morphologies for locomoting micro-scale
robotic agents” [7]. The laboratory methods and materials
followed Shen et al. and van Kesteren et al., simplified
and adapted to support reliable, iterative fabrication [11],
[10]. Insights from early explorations were progressively
incorporated until the loop connecting virtual and physical
processes was closed.

Fig. 2. Schematic of the isotropic, reciprocal thermal response of a typical
PNIPAm hydrogel structure.

D. The Pipeline

The pipeline links encoding, fabrication, actuation, mea-
surement, and selection into a single closed loop. Generations
of candidate morphologies are encoded as binary genomes
and fabricated as anchored PNIPAm-based microactuators
by 2PP-DLW in array format to maximise throughput and
simplify identification. A global thermal stimulus elicits
repeatable swelling–collapse cycles that are recorded under a
microscope. The recordings are processed to extract deforma-
tion trajectories from optically tracked points (seeds) on each
actuator. Each actuator’s fitness is computed as the average
of scalars that quantify non-reciprocity of seed trajectories by
calculating the geometric separation between its swelling and
collapse trajectories. This criterion, rather than net displace-
ment, was chosen to test whether the pipeline can optimise
a non-trivial behaviour with practical uses at low-Reynolds-
number. While locomotion is not demonstrated here, success
on this objective could inform the design of hydrogel-based,
Purcell-style swimmers because non-reciprocal motion is
essential for overcoming the ”scallop theorem” [13], [11].
Selection, crossover, and newcomer injection then produce
the next population, enabling an in situ evolutionary search.
The sections that follow detail each module of the pipeline
and evaluate feasibility, throughput, and the alignment be-
tween the measured fitness and its intended objective.

II. RESEARCH METHODOLOGY

A. Study design

An in situ genetic-algorithm pipeline for PNIPAm micro-
actuator optimisation, as outlined in subsection I-D, was
implemented as a proof of concept. Each generation pro-
ceeded through genome encoding, 2PP-DLW of arrays of
anchored actuators, global thermal actuation, video acquisi-
tion of swelling–collapse cycles, and selection to generate
subsequent genomes. Experimental conditions for fabrica-
tion, actuation, imaging, and analysis were standardised so
that only the genome varied between generations. Before
multi-generation evolution, non-reciprocal deformation of an
anchored actuator was demonstrated under these conditions
to verify that the target behaviour was attainable and measur-
able (§II-B). Fitness quantified path non-reciprocity (“higher
is better”; §II-H) from tracked deformation trajectories and
was used to drive selection and crossover. Detailed materials,
parameter values, and algorithms are provided in §§II-B–I;
mid-study adjustments are listed in §II-L.

Fig. 3. Exploratory PNIPAm morphologies with positive/negative features
showing pronounced shape change under actuation.

B. Groundwork

Printing readiness, material formulation, and morphol-
ogy heuristics were established before multi-generation
evolution. 2PP-DLW parameters were selected to pro-
duce repeatable anchored prints suitable for actuation.
Poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAm-co-
AAc) with 10 mg BIS crosslinker and 5 wt % AAc
was adopted to realise a comparatively looser network and
larger swelling–collapse amplitude than the tighter mesh
of PNIPAm with higher cross-linkage. Prior exploratory
experiments, depicted in Fig. 3, indicated that asymmetric
distributions of positive (printed) and negative (void) space
elicited more pronounced deformation and cycle hysteresis
than uniformly filled geometries; this informed the genome-
to-voxel mapping used in §II-E.

C. Demonstration of non-reciprocal deformation

Non-reciprocal deformation was demonstrated on an-
chored single actuators fabricated from PNIPAm-co-AAc
(BIS 10 mg). Three exploratory morphology families were



printed; one exemplar exhibited a clear, approximately ellip-
tical trajectory in the image plane over a swelling–collapse
cycle when tracked by simple point-based analysis (Fig. 4).
The result confirmed that the target behaviour was attainable
and measurable with the chosen setup; subsequent sections
describe the evolutionary pipeline that operated under these
fixed conditions.

Fig. 4. Demonstration of non-reciprocal deformation: (A) tracked trajec-
tories forming a loop; (B) microscope image with tracked points; (C) three
morphology families (bumps; bumps+holes; holes), with bumps yielding the
exemplar.

D. Materials and apparatus

Prepolymer formulations. Two hydrogel formulations
were used. For parameter screens and early experiments,
PNIPAm was prepared by dissolving N-isopropylacrylamide
(NIPAM, 200 mg), N,N’-methylenebisacrylamide (BIS, 15
mg), and diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide
(TPO, 50 mg) in 225 µL 1,2-propanediol; 0.5 mg fluorescein
was included as a tracer. For the evolutionary runs, PNIPAm-
co-AAc comprised NIPAM (200 mg), BIS (10 mg), TPO (50
mg), 1,2-propanediol (225 µL), and acrylic acid (2.9 µL);
no dye was added. The reduced crosslinker content and dye
removal produced larger, faster swelling near pH ≈ 6 and
were therefore adopted for evolution.

Substrates and surface preparation. Borosilicate
glass slides were vinyl-functionalised to promote adhe-
sion of anchored actuators. The functionalisation used
vinyltrimethoxysilane (VTMS, 98%), ethanol, acetone, and
nitrogen gas for drying; slides were oxygen-plasma activated
before silanisation. The preparation protocol is reported in
§II-F.

Fabrication system. Microstructures were fabricated by
2PP-DLW on a Nanoscribe Photonic Professional GT2
(model-specific optics and print parameters in §II-F).

Actuation and imaging platform. Actuation and imaging
were performed on a Nikon Eclipse Ti2 inverted microscope.
A simple capillary chamber was assembled as described in
§II-G; video acquisition settings are given in §II-H.

Software. Geometry generation was performed in
Blender; print slicing and job preparation were done in
DeScribe; video analysis used Python with OpenCV.

E. Genome encoding and morphology generation
Each candidate morphology was encoded as a fixed-length

200-bit genome that addressed a 5 × 5 × 8 lattice of 6 µm
cubic voxels (overall envelope 30 × 30 × 48 µm). A bit value
of 1 specified a printed voxel and 0 a void. Bits were read
in a fixed order with z varying fastest, then y, then x, so that
reconstruction of the virtual 3D occupancy from the genome
was deterministic.

Fig. 5. Genome-to-geometry workflow: codes.csv read in Blender, vox-
elised and tiled as a 5×5 array, then exported as STL for DeScribe.

A 54 × 54 × 2.05 µm base was appended beneath the lattice
with a slight overlap into the body to promote adhesion
during development and handling. To ensure unambiguous
spatial indexing on circular slides, a small generation label
was printed just outside the 5 × 5 array. The label fixed
the array orientation so that the [0,0] actuator corresponded
to the upper-left position, thereby preserving the mapping
from array position to actuator to genome across fabrication,
imaging, and analysis, while remaining outside the imaging
field.

For each generation, a codes.csv file listed 25 individuals
(GlobalID, Code). A bespoke Blender script read this file,
reconstructed each geometry as specified above, and tiled
the actuators into a 5 × 5 array with 80 µm centre-to-centre
spacing (Fig. 5). The scene was exported as STL for slicing
in DeScribe prior to 2PP-DLW fabrication (§II-F). Designs
were not pre-filtered for manufacturability and were recorded
if they failed.

Design rationale. A voxel representation was adopted be-
cause voxel-based encodings are widely used in evolutionary
morphology and have been demonstrated at the microscale
[7]. It also allowed the direct control of positive versus nega-
tive space, which aligned with preparatory observations about
cycle hysteresis. The representation also allowed single-point
crossover to act on spatially coherent substructures.

F. Fabrication by 2PP-DLW
Substrate functionalisation (vinyl-silane). Glass slides

were rinsed with ethanol and dried under nitrogen, oxygen-



plasma activated, and placed in a sealed chamber containing
0.4 mL vinyltrimethoxysilane (VTMS, 98%) for overnight
chemical vapour deposition at < 0.05 kPa. After silanisation,
substrates were rinsed with acetone, dried under nitrogen,
and mounted with the treated face oriented toward the resin
during printing.

Print file preparation. Genome-derived geometries (§II-
E) were exported as STL and imported into DeScribe for
slicing and job preparation. The profile “IP Dip 63× Fused
Silica (3D SF)” was used with 0.2 µm slicing, 0.2 µm
hatching, contours disabled, hatching angle 90° with 30°
offset, block size 80 × 80 × 50 µm with block offset +30,
+30, 0 µm, and zig-zag write order.

Writing. Structures were fabricated on a Nanoscribe Pho-
tonic Professional GT2 with a 63× oil-immersion objective.
The generated GWL script was edited to set 90% laser
power and 10 000 µm s−1 scan speed. Silanised slides were
mounted on the holder’s oil side and secured; a PDMS spacer
window on the top face was filled with the prepolymer (§II-
D). Immersion oil was applied to the opposite face. After
locating the resin-glass interface, a debris-free write field was
selected. Anchors and bases were written first, followed by
the voxelised bodies.

Development and hydration. Following exposure, sam-
ples were developed in PGMEA (10 min), rinsed in IPA (3
min), and dried gently under nitrogen gas. Prints were then
equilibrated in water before chamber assembly (§II-G).

Acceptance. Arrays advanced to actuation when at most
five actuators failed to polymerise or adhere to the glass
slide and no gross defects or occluding debris were observed.
Generations failing these criteria were reprinted.

G. Chamber assembly and thermal actuation

Chamber assembly. A 0.12 mm double-sided adhesive
spacer was centred over the printed array. A gold-coated slide
was placed gold side down to close the chamber. 10 µL of
pH 6 Milli-Q water was introduced by micropipette as the
working fluid; capillarity filled the cavity. Two sides were
left open for air egress, and complete immersion was verified
visually.

Thermal stimulus. Thermal actuation was provided by
the microscope’s Lumencor fluorescence channels at 100%
intensity in 3 s on / 3 s off cycles (5 repeats). Samples were
illuminated for approximately 1 minute prior to beginning
the cycles to pre-bias them near the PNIPAm transition thus
eliciting an immediate response. Illumination served as a
global stimulus.

H. Imaging and dataset

Imaging configuration. Imaging was performed on a
Nikon Eclipse Ti2 inverted microscope with a 20× objective
and a 1.5× intermediate magnifier. Brightfield illumination
was DIA LED at 100% (Shutter: FL Lo). The filter train was
set to Pinkel Quad on the turret (DAPI/FITC/TRITC/Cy5)
with Cy3 emission on the EM wheel. The field of view was
positioned to frame the 5 × 5 array with the orientation label
kept out of view.

Fig. 6. Physical protocol overview: slide functionalisation, 2PP-DLW
writing, development, hydration, and capillary-chamber assembly.

Acquisition settings. Videos were recorded at 15 fps with
1 ms exposure. For each generation, a single video of the
entire array was acquired while running the thermal actuation
programme (§II-G).

I. Trajectory extraction and cycle segmentation

Preprocessing and phase detection. Videos were con-
verted to grayscale and thresholded with Otsu’s method to
separate the actuators from the background [14]. A light
morphological open–close removed speckle while preserving
boundaries. For each frame, the area of the largest external
contour was used as a simple proxy for degree of actuator
swelling. The resulting area–time trace was smoothed (Sav-
itzky–Golay) and analysed for alternating growth and shrink-
age phases that matched the fluorescence-driven thermal
actuation schedule (§II-G) [15]. Simple timing rules were ap-
plied to suppress spurious flips from noise or debris, namely
a minimum time between peaks and troughs, minimum peak
prominence, and a short “debounce” so a phase had to persist
before switching. Minor robustness adjustments made after
early runs are listed in §II-L; settings were then fixed for all
subsequent generations.



Fig. 7. Video-analysis pipeline: preprocessing and phase detection, ROI inference, feature selection and tracking, and seed-trajectory extraction.

Actuator localisation. The field of view was partitioned
into 25 regions of interest (ROIs), one per actuator in the 5
× 5 array. On the frame with maximal swelling, Canny edge
detection provided high-contrast boundaries, which were
clustered by k-means (k = 25); the bounding box of each
cluster defined an ROI which was ordered in row-major order
to match the indexing of the physical actuators [16]. Missing
or damaged actuators were masked via a manual exclusion
list. When edge contrast was insufficient, a uniform 5 × 5
tiling was used as a fallback.

Feature selection and tracking. Within each ROI, up
to 20 candidate points were detected using the Shi–Tomasi
corner measure, which favours well-defined, trackable image
features [17]. To select for points with greater movement
over a half-cycle, optical flow was computed which estimates
the apparent motion of image patterns between consecutive

frames. A dense Farnebäck method provided a per-pixel
motion field; its magnitude was averaged over the swell
and over the collapse half-cycles to form a motion-saliency
map [18]. The five highest-saliency points were retained as
seeds. Seed trajectories were then obtained with pyramidal
Lucas–Kanade optical flow, which estimates point motion
by local image matching and handles larger displacements
via image pyramids [19]. Tracked (x, y) positions with
phase labels were exported for fitness computation (§II-J).
A processed video with overlays was generated for quality
assurance.

Algorithm choice justification. The pipeline used broadly
adopted, well-characterised computer-vision methods that are
fast, reproducible, and require minimal manual tuning.



Fig. 8. Fitness computation: target swell/collapse half-cycles selected, paths aligned by DTW, mean-squared separation computed, and the log updated.

J. Fitness definition and validation

Phase selection. For each actuator, only the final collapse
and the immediately preceding swell half-cycles were used
for scoring, as trajectories were most stable by this point
(§II-G).

Definition. For each tracked seed (§II-I), the swell trajec-
tory was compared with the time-reversed collapse trajectory.
The two paths were aligned by dynamic time warping (DTW)
to allow small timing mismatches. The per-seed score was
the mean squared Euclidean distance between DTW-aligned
point pairs in the image plane (pixels). Actuator fitness was
the arithmetic mean of the five seed scores. Actuators with
no valid seed trajectories were assigned a fitness of 0.0.
Fitness was maximised; larger values indicate greater cycle
non-reciprocity.

Rationale. At low Reynolds number, motion is effectively
kinematic: the outcome depends on the sequence of shapes,
not the rate at which they are executed (Scallop Theorem)
[13]. A suitable metric for non-reciprocal motion should
therefore emphasise path geometry and be insensitive to
time parameterisation. DTW provides this by aligning swell
and (time-reversed) collapse such that the resulting squared-

distance captures geometric separation of the two loops while
discounting small timing offsets from imaging or actuation.

K. Evolutionary loop

Population and encoding. Each generation contained 25
individuals with genomes comprised of 200 bits (§II-E).

Initialisation. The seed generation was created by inde-
pendent sampling at each locus (Bernoulli p = 0.5 per bit).

Fitness evaluation. Fitness was computed from tracked
trajectories as described in §II-J.

Selection and variation. An elitist generational scheme
was used. The top two individuals (highest fitness) were
carried unchanged (elites). Parents were chosen by tourna-
ment selection (k = 5). Single-point crossover produced 13
offspring. No per-bit mutation was applied.

Exploration. To maintain diversity, 10 randomly gener-
ated 200-bit genomes (Bernoulli p = 0.5 per bit) were added
each generation.

Replacement. The next generation comprised 2 elites, 13
crossover offspring, and 10 newcomers (n = 25).

Termination. The experiment proceeded sequentially until
the available time budget elapsed.



Fig. 9. Genetic-algorithm flow: population initialisation, evaluation, elitism and tournament selection with single-point crossover, newcomer injection,
and next-generation creation.

Algorithm choice justification. Operator choices were
adapted from Uppington et al. for a fully physical loop
with limited, noisy evaluations [7]. Elitism carried forward
the top designs despite noisy scores; tournament selection
applied steady selection pressure via simple relative compar-
isons; and single-point crossover exchanged contiguous gene
blocks, maintaining spatial coherence in the voxel encoding.
Exploration was guaranteed by injecting ten random new-
comers each generation in place of per-bit mutation, avoiding
extra hyperparameters.

L. Protocol adjustments
Working fluid volume. Immersion volume was standard-

ised to 10 µL of pH ≈ 6 Milli-Q water for all subsequent
runs. Earlier variability in volume may have negatively
impacted fitness; volume was fixed thereafter (§II-G).

Phase detection robustness. The phase-labelling pipeline
was made more robust by (i) applying speckle suppression
and smoothing the area trace before peak finding, (ii) en-
forcing cycle-aware timing rules matched to the actuation
programme, (iii) adding a debounce so that a new phase had
to persist before a switch was accepted, and (iv) terminating
in swelling to match the actuation schedule (§II-I).

ROI fallback and exclusions. When edge contrast was
insufficient for Canny and k-means ROI estimation, a uni-
form 5 × 5 tiling of the field of view was used as a fallback.
Missing or damaged actuators were masked via a manual
exclusion list; ordering remained row-major to preserve array
indexing (§II-I).

III. RESULTS

Fig. 10. Distribution of actuator fitness across generations (n=25 per
generation). Population trend and top-actuator series shown (top); within-
generation right-skew visible (bottom).

A. Data yield & operating context

The evolutionary pipeline was operated over eleven work-
ing days, during which 16 generations, comprising 400
micro-actuators, were fabricated. Because the project ran on



a compressed timeline, issues were identified and corrected
during operation. Early production was limited by fault
catching, failed prints, and operator error, yielding fewer than
one successful generation per day; throughput later stabilised
at approximately three generations per day.

B. Population distribution

Figure 10 visualised the distribution of actuator fitness
across generations. The lower panel indicated right skew
of the fitness distributions, consistent with a coefficient of
variation of approximately 1 across generations. For this
reason, the median was used to summarise population-level
behaviour, while the maximum was used to characterise
selection behaviour, as shown in the upper panel.

Fig. 11. Median fitness by origin type (elite, crossover, newcomer) for
each generation; no improvement observed.

C. Preliminary Trends

When the per-generation median fitness was plotted to-
gether with medians stratified by origin type (elite, crossover,
random) in Figure 11, no positive trend was observed. A
slight negative association was indicated by Kendall’s τ =
−0.467 with p = 0.0115. This lack of improvement in the
medians suggested that overall fitness did not increase across
generations.

Fig. 12. Best-of-generation fitness across 16 generations (linear fit shown),
indicating a declining trend.

D. Selection Behaviour

Top-per-generation fitness was then regressed against gen-
eration in Fig. 12 to test whether the algorithm selected for
fitness itself. No increase was observed (slope = −0.097, R²
= 0.46, p = 0.004), indicating that higher fitness, and thus
non-reciprocal motion, was not being optimised.

Fig. 13. Start-normalised seed trajectories for top actuators across gener-
ations; dots mark path amplitude (pixel distance from start).

Fig. 14. Increase in path amplitude of top seeds across generations with
linear fit.

E. Trajectory Analysis

To investigate what was favoured, trajectories of the best
seeds within the top actuator of each generation were exam-
ined. Fig. 13 shows the flower-like data created when plotting
these paths normalised to the same starting point. The darker
petals created by the seeds of earlier generations appear to



have a more squat, rounded shape compared to the longer,
thinner petals from later generations.

The paths lengthened over time. Quantifying this as the
distance from the starting point to the farthest point on the
path (amplitude) and plotting amplitude against generation
in Fig. 14 yielded a positive linear trend (slope = 0.381, R²
= 0.48, p = 0.00292).

Fig. 15. Relationships for top actuators: voxel spatial autocorrelation
(Moran’s I) versus generation, amplitude, and fitness.

F. Morphological Trends

To relate this behaviour to morphology, Moran’s I was
computed for the most fit actuator of each generation and
compared with generation, fitness, and amplitude (Figure
15). Moran’s I quantifies spatial autocorrelation in each
actuator’s 5×5×8 binary morphology to measure the extent
to which occupied voxels formed clusters after accounting
for overall occupancy. A 3D king’s-move weight matrix
(face/edge/corner adjacency, open boundaries) was applied
to reflect local physical coupling in the lattice. Moran’s I
increased with generation (Spearman ρ = 0.594, p = 0.015),
correlated positively with amplitude (Spearman ρ = 0.381,
p = 0.145), and correlated negatively with fitness (Spearman
ρ = −0.430, p = 0.096). These relationships suggested
that morphologies became more spatially structured in a
manner associated with larger path excursions rather than
with higher fitness. Overall, the evidence indicated that the
pipeline exerted selection pressure on amplitude rather than
on non-reciprocal actuation.

IV. DISCUSSION AND CONCLUSIONS

This work advanced evolutionary morphology by demon-
strating an iterative microfabrication process that linked
physical performance to morphological selection. Method-
ologically, it contributed a practical package for physical
evolution: a voxel genome compatible with 2PP-DLW, array-
level printing and printed orientation labels to preserve iden-
tity, and automated video analysis for trajectory extraction
and fitness computation.

A. Key Findings

The pipeline was executed repeatedly at a useful through-
put (∼ 3 generations per day) for 16 generations (400
actuators) with stable, repeatable operation, confirming prac-
tical throughput under laboratory constraints. At the popu-
lation level, fitness (non-reciprocity) did not improve, and
per-generation maxima declined, while the highest-scoring
actuators showed a systematic increase in path amplitude;
voxel morphologies also became more spatially clustered
over time.

A plausible explanation was that the seed-selection heuris-
tic emphasised net displacement rather than trajectory geom-
etry. Seeds were chosen at locations with large optical-flow
magnitude between the peak swollen and most-collapsed
frame; this quantity approximated a single end-to-end dis-
placement vector, not the intervening path. Fitness, however,
was computed from path non-reciprocity. This constituted
a measurement–selection misalignment: the criterion used to
decide where to sample promoted a quantity that is inversely
related to the quantity used to judge success. As a result,
selection pressure was steered toward large net displacements
(amplitude), which narrowed loop geometry and depressed
the non-reciprocity score.

The observed rise in amplitude and voxel spatial cluster-
ing, alongside declining per-generation maxima, was con-
sistent with this mechanism; environmental variability may
have modulated magnitudes but did not explain the coherent
direction of these trends.

B. Limitations

This work was a proof-of-concept exploration rather than
a systematic optimisation study. Throughput was prioritised,
which reduced time for slide cleaning. Increased debris was
sometimes classified as foreground by Otsu thresholding;
when a swelling actuator contacted debris and contours
merged, the contour-area-based proxy for phase estimate
spiked. A manual option to select a clean reference actuator
for phase estimation was added, but residual sensitivity to
debris remained.

Environmental control was incomplete early on. Immer-
sion volume varied prior to Generation 05, altering heating
dynamics and limiting actuation amplitude; Generation 05
was refabricated and 10 µL was fixed thereafter. Evaporation
and pre-bias timing were not instrumented, so unmeasured
drift may have persisted despite procedural standardisation.

The video pipeline changed mid-study to stabilise phase
labelling: introducing speckle filtering and smoothed area
traces before peak finding, cycle-aware thresholds, and a
∼ 0.5-cycle debounce was applied. These updates improved
consistency but created non-stationarity between early and
late generations.

Actuator fitness was defined as the mean of five seed
scores to guard against rare tracking failures. Given the
robustness observed in tracking, this averaging likely diluted
genuinely strong non-reciprocal behaviour when expressed
locally by a single seed. A field-level metric derived directly
from optical flow would avoid this aggregation effect.



Finally, the evaluation budget was limited relative to the
search space. Sixteen generations of 25 individuals were
too few for converging a 200-bit morphology code. Results
were specific to PNIPAm-co-AAc, the chosen 2PP-DLW
recipe, and global thermal actuation; generalisation to other
materials, stimuli, or fabrication settings was not assessed.

C. Implications for future work

Non-reciprocal deformation of anchored PNIPAm actua-
tors was demonstrated and then used as the optimisation
target. While the non-reciprocity did not improve, it was
achieved through geometry-exclusive tuning with one-step
2PP-DLW. The use of positive and negative space distribu-
tion for non-reciprocal actuation, even if not evolved, has
implications for hydrogel-based Purcell swimmers.

The future iterations of this pipeline should make delib-
erate efforts to ensure that the morphology selection process
and fitness function are aligned. The evaluation of fitness
directly from an optical flow motion field should be explored
as a more holistic metric. Seed selection could also be
explored as an actionable lever for selection. Environmen-
tal parameters such as pre-bias timing should be fixed or
logged, and a simple temperature readout should be added
to contextualise actuation magnitude. If again faced with a
limited evaluation budget, the search space should be reduced
to fewer voxels to have a greater chance of converging.
With these adjustments, this proof-of-concept pipeline can
be adapted to outcome-oriented optimisation over longer
runs. Furthermore, this evolutionary pipeline is potentially
transferable to other micro-fabrication systems that accept
geometry as input and provide time-series imaging as output,
reducing reliance on designer intuition and enabling less
biased exploration of design spaces.
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